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Evolution of higher-order bright solitons in a nonlinear medium with memory
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Numerical integration of Maxwell’'s equations for propagation of a femtosecond pulse in a medium with
memory characterized by linear and nonlinear Lorentz responses is carried out using the finite-difference
time-domain method recently applied to the field of nonlinear optics. The main dynamical features, interfer-
ence mechanisms of initial higher-order bright solitons under the combination of dispersion, self-phase modu-
lation, and Raman self-scattering, are considered and compared to the case of an instantaneous nonlinear
response[S1063-651X98)02905-3

PACS numbdis): 42.65.Ky

l. INTRODUCTION e~O(Aw/w)~O(To/ Tewum) <1 (quasimonochromatic
approximation. The “nonlocal” part of the SVEA requires
Wave propagation in dispersive nonlinear media has atthat the envelope must not significantly change as the pulse
tracted considerable attention in the past dedddein part  propagates over a distance equal to the carrier oscillation
motivated by its potential applications to optical fiber com-wavelength\ 5, which is reflected mathematically by the fact
munication systems. Propagation of picosecond opticahat the envelope equation contains only the first derivative
pulses in monomode optical fibers is governed by the nonwith respect to the coordinate along the propagation direc-
linear Schrdinger (NLS) equation describing the effects of tion, in contrast with Maxwell's wave equation, which is of
group velocity dispersiofGVD) and the refractive index second order in the propagation coordinate. Hence it can be

nonlinearity. Its general form is given by solved with substantially less computational effort than Max-
well's wave equation. This benefit has been exploited in the
.(ﬂA 1 5/-\) Ty 1 &#A ) investigation of a vast number of nonlinear optical phenom-
—+ — —|+i5A-5B,— +|A]’A=0, (1) . : :
IX vy dt 2 272 42 ena[3]. Processes involving a backward propagating pulse
violate the latter nonlocal contribution.
which can be simplified to The progress of ultrashort laser optjd$ has now arrived
at a point where light pulses with durations comparable to
A Ty 1 §%A 5 the carrier oscillation cycle have become availdlidgé For
'(9—§+| - A- Eﬁzﬁﬂfw A=0 (2 subpicosecond optical pulse duratidsdth up to~ 50 fs),

the NLS equation should be modified. The spectral width of
éuch pulses becomes comparable to the carrier frequency and
three main higher-order effects become importéntthird-
order dispersio(TOD), (ii) self-steepenindSS), and (iii)
Raman self-scatterinRSS. TOD is a higher-order linear
effect arising from the wavelength dependence of GVD,
while SS and RSS are nonlinear processes resulting respec-
tively from the intensity dependence of the group velocity
(i.e., nonlinear dispersigrand the delayed response of the
nonlinearity. Among the three higher-order physical effects,
2A the intrapulse Raman stimulated scattering is the dominant

if time and space are measured in the group velocity fram
7=t—X/vg, §=x. The NLS equation is obtained directly
from the govermng Maxwell equations by a standard reduc-
tive perturbation proceduf] within the slowly varying en-
velope approximatiofiSVEA), meaning that the pulse enve-
lope A(x,t) modulating the underlying -carrier wave
exfi(kox— wgt)] is assumed to be slowly varying in both time
and space, which is expressed by the four conditions

A
X ~0(e)<l, —= perturbation and is among the most important nonlinear in-
KodxA koA teractions that occur in optical fibers.
2A A RSS produces a continuous downshifedshif) of the
t —~0(e)<1, t ~0(e)<1. 3) soliton carrier frequency, a phenomenon know as soliton

WA woA self-frequency shiff6], and, consequently, in the anomalous
dispersion regime, a continuous deceleration of the pulse.
Clearly, the SVEA imposes different requirements on thesince its experimental discovefy], numerical[8] and ex-
physical system. The “local” assumption of the SVEfr  perimental[9] investigations of higher-order nonlinear ef-
a pulse traveling in the space directiodemands that the fects resulting from the finite response time of the material
pulse width 7y must be much longer than the carrier nonlinearity have been carried out extensively because of
oscillation periodT,=27w, *, i.e., the ratio of the spectral their fundamental as well as technological importance. Ra-
frequency width to the carrier frequency is a small parameteman induced optical shocks and kink solitons representing
shock fronts propagating undistorted inside optical fibers
have been predictefd0]. Carrier wave shocking of femto-
*Electronic address: fitelz2@sis.ucm.es second optical pulses as a result of a SS effect producing two
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well-separated events, one on the optical carrier and the othgrelds the KH GNLS equation under the assumption of short
on the envelope of the carrier, has been evideliéél The delays. The BW formalism does not rely directly on the
conditions for complete compensation of the soliton self-SVEA; it only assumes that there are at least three optical
frequency shift by a proper choice of the optical gain speccycles within the envelope, i.e<1/3, and neglects back-
trum and the dispersion parameters of the media have beaward propagating waves. Recently, a general 3D wave equa-
given [12]. Phase-sensitive amplifiers have been demontion first order in the propagation coordinate was suggested
strated in this context to act as a restoring force in frequencyby Brabec and Krausl18] and the concept of envelope
constraining the pulse to remain near its carrier wavelengtiequations was shown to be applicable to the single-cycle
[13]. Soliton interactions induced by higher-order nonlinearregime of nonlinear optics. In the frame of the Brabec-
effects have also received a great deal of attention with th&rausz GNLS equation, not only the envelope but also the
advances in soliton laser technolodyt], mainly because of carrierphasemust not vary significantly as the pulse covers
their key role in the propagation of an ultrahigh bit rate co-a distance equal to the carrier wavelengthe so-called
herent soliton train through optical fibel$5]. Migration of  slowly evolving wave approximatio(BEWA)]. On the other
the intersoliton phase difference associated with RSS forcesand, it does not impose a limitation on the pulse width.
the solitons carrying the information bits into a deleterious In this paper, we solve directly the 1D Maxwell equations
attractive phase relationship, which is detrimental to the bitfor the evolution of an initial sulf50-fsmultisoliton pulse in
error rate. Therefore, the effects of various influences on tha nonlinear medium with memory in both the linear and
propagation of solitons including periodic amplification, nonlinear polarizations. For illustrative purposes we have
higher-order dispersion, and Raman scattering losses, eachatiosen an initial third-order bright soliton pulse of duration
which will be increasingly important for shorter pulse equal to 25.7 f{FWHM) containing eight carrier oscillation
widths, have to be well understood. The goal of the presentycles. The finite-differencé-D) time-domain(TD) method,
contribution is to address and analyze among these influsroposed recently as a computational tool for the field of
ences the important ultrafast nonlinear process of Ramanonlinear optics[19], discretizes the differential form of
scattering. Maxwell’s partial differential equationd®DE9 appended by
Different generalized versions of the nonlinear Sehro a set of ordinary differential equation®DES for the
dinger equation have been proposed to model the formaenemory integrals and provides an accurate description of the
higher-order processes. Following the perturbative Kodamapulse evolution for the given constitutive relation between
and Hasegaw#&KH) approach 16|, a generalized nonlinear the electric field and polarizations, without recourse to the
Schralinger (GNLS) equation including three additional SVEA or SEWA. We restrict our attention to nonmagnetic
terms representing the dominant higher-order effects is sudkerr media with no free charges. We examine dynamical
gested. Including the higher-order terms, the KH GNLSmultisoliton pulse breathing mechanisms before and after the

equation may be written as “foci” point, the decay and formation of fundamental soli-
tons under the influence of the higher-order nonlinear effects.
WA T 1 2A A systematic comparison with a dielectric medium charac-
. Lo : : : :
i— +i —A——B2—+0'|A|2A+ h=0, (4 terized by an instantaneous nonlinear response is performed
o6 2 2 2 throughout.
whereh represents the higher-order effects Il. GOVERNING EQUATIONS
3 2 We consider the time-dependent evolution of a one-
h=il — @E+Uli(|A|2A)+0‘2A(9|A| .5 dimensional pulse of right circular polarization in tlyez
6 473 aT o plane, traveling along the axis. Maxwell's equations for the

electric- and magnetic-field quantiti€&sH are
The three higher-order terms describe respectively TOD, SS,

and RSS. The KH GNLS equation correctly describes the VXE=— puodH/dt,
higher-order nonlinear effects for optical pulses as short as
~50 fs[full width at half maximum(FWHM)]. For much VX H=4D/st. @)

shorter pulses, it fails to provide a correct physical descrip-

tion since the effects of Raman gain are included only to firStrhe material linear and nonlinear responses are included
order. A more exact one-dimensionallD) integro-  hrough the constitutive relatio= o[ E+ ®],where ®
differential envelope equation has been derijeq by Blow =®W+®® s the total induced electric macroscopic polar-

and Wood and should be used in that case for a COITe¢l4iion consisting of linear and nonlinear parts. If the time
description of SRS. The Blow-Woo@®W) GNLS equation  gcaje over which the medium changefined by the me-

expressed by dium polarization is of the order of the pulse duration, the
effects of a finite response time must be taken into account.
A To 1 A B3 d°A i 9 Mathematically, the memory effects are described through
|ﬁ—§+| TA_Eﬁzﬁ_' 5 ﬁﬂf 1+ g 97 the convolution integrals
T t
X Af R(7—71)|A(&,m)|?d71|=0 (6) ‘p(l)(t):J x P (t—t)E(tydty, (8)




57 EVOLUTION OF HIGHER-ORDER BRIGHT SOLITOS ... 6081

t optical wave frequency, responding to the field intensity.
@(3)(t)=f X (t—ty, 1=ty t Later, we will see thatQ, can be thought of as being the
o normal mode amplitude of a driven damped harmonic oscil-
—tg)- E(t1)E(t,)E(tg)dt;dt,dty lator. In general, the nonlinear susceptibiljﬁ?) will differ
from x») in physical properties such as resonances and re-
_ ft Ax®(t—t,)E(ty)dty, laxations. In terms of the Fourier transform
t E(t):if E(w)expliot)dw,
27) —»
AxP(t—ty)= f xP(t—ty t—tyt
—t3) - E(t,) E(tg)dt,dt,. (9) E(w)=f_xE(t)exr(—|wt)dt, (12

For simplicity, a centrosymmetric and isotropic material hasthe medium polarizations are written as
been assumed, so that the second-order susceptibility tensor
x® is identically zero, xY=y{)= ) and x®=x{ V()= ¥ V(0)E(w),
=x'¥) ,[20]. As a consequence of isotropy, the electric in-
duction fieldD and the electric fieldE are parallel. Third- . © .
order nonlinear effects include the quadratic electro-ojliic D (w)= f Ax¥(w,)E(0-w,)do,,
Kerr) effect, third-harmonic generation, four-wave mixing, o
intensity-dependent refractive index, stimulated Raman and -
Brillouin scattering, and two-photon absorption. The physi- A;(<3>(wv)=3((3>(wu)j E(Q)E*(Q—w,)dQ. (13
cal mechanisms contributing to the nonlinear third-order o
electric susceptibility far from electronic absorpti@re., in . .
the visible or infrared spectral regions because the electronfc™©M Ed.(13) the three-wave interaction process can be re-
absorption lies in the ultraviolpare of two different types garded as the scattering of the spectral comporke(a
and contribute additively to(® [21]. An “electronic” con- — w,) into the third-order polarization wave spectral compo-
tribution, nearly instantaneous-( 0.1 f9, arises from the nent ®®)(w) and nuclear vibrationﬁ)}“)(w,,), which in
electronic response to the applied electric field against théurn are excited by every pair of spectral components sepa-
heavy nuclei considered fixed at an average position. Theated by w,. Because of causalitfi.e., the susceptibility
second “nuclear” contribution arises from the electric-field- functions y(*)(t) and x®)(t) are zero fort<0], the Fourier
induced changes in the internal nuclear vibrations on a mUChansformS)}(l)(w),;((3)(w) exist and are differentiable for
longer time scale £ 100 fg and are usually temperature )| real » only if the real variablew is extended into the
dependent. To model in a classical electrodynamical pictur@,pper complex plane = w,+iw; with w;>0 (strictly posi-
these interaction$22,23, the cubic polarization must be {jve) yielding the Kramers-Kinig relations between the real
proportional to the electric field at tintetimes a convolution  anq imaginary parts of each Fourier transform and ensuring
of the field intensity at earlier tlme(fselatec_i to t_he intensity- 77 x®(0)|dt<ee and [~ |x3(t)|dt<o. Note that since
dep_e_nd_ent small d_|sp|ac_ement of the_ _VIbratlng nuclei fromy,q susceptibility functions are real, the real part of their
equilibrium). Equation(9) is then simplified to Fourier transform is symmetric and the imaginary part anti-
symmetric.
To establish the link between the susceptibility formalism
‘ and the description of dynamic nonlinear optical processes it
AX<3>(t)=J X3 (t—t||E(ty)]?dt,, is useful to introduce the important concept of optical field
— induced refractive index. For simplicity, we restrict our at-
tention to right circularly polarized fields, i.e.E
xP(t)=al(1-6)8(t)+ 6g,(1)], (10 =[0FE,,E,]", andH=[0H, ,H,]", represented by

D (1) =Ax3()E(1),

where a is the nonlinear coupling constant amdparam- 1 _
etrizes the relative strength of the instantaneous and delayed E(x,1)=5a(x,tyexli(kex—wot) ]+ C.C.,
interactions. Thus the third-order memory functiby(® is
expressed as the sum of electronic instantaneous and mo- 1
lecular vibrational delayed parts H(x,t)= Eh(x,t)exp[i (koX— wot—m/2)]+c.c., (14)
B)=A,(3 3
Ax™'=Axkent AX,” which satisfy the phase relatiogg= —iq, andh,=—ih,,
in which case new complex scalar wave packets can be de-
A)(I((Se)rr= a(l_ 0)||E||2! fined as
Ax,Y=a0Q,. (19 ExD] [axt

Q, describes the natural oscillation within the dielectric ma- H(x,t) | =] h(x.1) | exdi(kox— wqt)], (15
terial with frequency many orders of magnitude less than the D(x,t) d(x,t)
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where E=E,+iE,, H=iH,—H,, and D=D,+iD, and  To a good approximation for the visible and infrared spectral
for which the third-harmonic polarization is absent sinceregions, the frequency dependence of the nonlinear refractive
|E|I?=|E|?=]|q(x,t)|?. The corresponding Maxwell equa- index is not important and dominated by the Kerr nonlinear-

tions are written as

J 1 9

at Mo (9_X

3

AN
- ax

D=¢[E+ DM +dO), (16)

or in the form of a wave equation for the complExfield

7 @ 7

_ZE_02_2E+_2(I):O' a7

ot IX ot
In frequency space, assuming thd®~Ay®)(w)E(w)
~x®)(w)|E|?, the wave equation reads

2 2

0 . o,
—2E+ E(w)—ZEZO, (18
X Cc

where

€(0)=1+xY(w)+A Y (o) (19

ity. The fraction @ of the nonlinear index coming from the
delayed nonlinear response can be obtained from measurable
values ofn, [24]. The imaginary part of the third-order sus-
ceptibily I', describes the Raman gain profile, responsible
for the RSS process. The continuous spectrum of the gain
profile stretches from zero up t9440 cm ! (~13 TH2),
which covers the broad spectrum of femtosecond optical
soliton pulses. The Raman gain can then amplify the low-
frequency(Stokes components of ultrashort wave packets
by pumping energy from their high-frequen¢gnti-Stokes
components. Consequently, the center frequency of the pulse
continuously decreases during propagati@oliton self-
frequency shift [6].

Recently, a different approach in the nonlinear optics
community, emerging from the FD TD solution of Max-
well's equations, has been shown to be particularly well
suited to model electromagnetic nonlinear phenomena inside
compact optical devices such as optical fibers, couplers,
switches, and amplifier§19]. Within this framework, the
medium memory(i.e., the linear and nonlinear dispersive
propertie$ is described by a set of ODEs appended to Max-
well's PDEs (16). The ODEs represent the dynamic equa-
tions of the convolution integra®*) and Q, driven by the
electric field and its intensity, respectively. Here we model
the kernel functions by Lorentz linear dipole oscillators of
single resonance frequency,

is the dielectric function whose third-order contribution
Ax®)(w) is proportional to the field intensity. Since

xM(w) andy®)(w) are in general complex, so is the dielec-
tric function e(w). Its real and imaginary parts are related to
the refractive index(w) and the absorption loss coefficient

2
Biowl
2 1

Y(w)=——""
X 0+ 2iyo—o

I'(w) through the relationship

c 12
e(w)= n(w)-i—il“(w)z} . (20

Therefore,
N(w)=no(w)+n,|E[?,

I'(0)=To(w)+Ty(w)|E[ (21)

QZ

0,(o) - (24)

_Qg-i- 2iy,0— w?

where w4, vy, Q,, and y, characterize the resonance fre-
quency and bandwidth of the linear dipole oscillators mod-
eling the medium response. In the time domain, the kernel
functions obey damped harmonic-oscillator equations of mo-
tion

XU +2yx () + wix P =0,

where the linear and nonlinear optical induced refractive in-

dices are given by

no(w)= R V1+xP(w)],

9,+27,9,+0%9,=0, (25

whose solutions take the forms

~(3) B -
X®(0) al(1-6)+6g,(0)] 102
~ ~ 1 .
2 on(we)  2nolwo) 2P X 0=", et = ysin(ut) O(),
while the single- and two-photon absorption coefficients are )
0o . 9, (1) =—=exp( = y,D)sin(», ) O (1), (26)
Fo(@)= praog M (@)
where v0=\/w21—72 and uv=\/QU2—yUZ. This property of
To(w)= o I ()] = abwg Im ) the kernel functions allows one to treat the memory integrals
2(@ " no(wg)C X (@)]= No( wg)C [9.(@)]. &M 90, as new dependent variables governed by driven

(23

damped Lorentz oscillator equations
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FIG. 1. Theoretical linear chromatic dispersion features: linear refractive itedixi curve and absorption coefficierftlashed curve
group velocity, group velocity dispersion, and third-order dispersion for a Lorentz medium characterized by a single resonance frequency
w1to=6, static relative permittivity equal to-48;=4, and damping rate equal tg,=10°.

SV +2yd D+ 0id = B, w’E, E(x,t=0)=NE, sechix/cty)exp2im/\y), (28
_ with N= 3. The dimensionless carrier wave number and fre-
0,+27,0,+0Q20,=02E|% (27)  quency are equal thycty=28.56 andw,ty=30.46, respec-

tively. The peak intensity of the initiak field is equal to

22 . . . -
Such a phenomenological description of the interaction beN"Eo @nd its full width at half maximum (1.%8,=7.71
tween light and matter relies on the Born-Oppenheimer ap;_Lm) contains eight carrier oscillation wavelengths. Approxi-

roximation. The ODE$27) are coupled simultaneously to Mate initial values forH and D can be obtained from the
IF\)/IaxweII’s PDEs(16) an$d Qumericallp;/ integrated in a rr¥ov- Fourier transfo_rm of Eqs{.16) and(27)_ [26.]‘ Figure 1 shows .
ing coordinate system in order to keep the pulse slowly mov;ypmal .theoretlcal matgnal chromatic d|spersj|onA features in
ing on the computational grid, using a second-order-in-timethe optical range, obtained from the expressionydf(w).
second-order-in-space nonlinear FD TD method with radia- 1.5
tion boundary conditions describing the outgoing field be-
havior. A detailed stability and phase error analysis of FD 1t
TD methods in dispersive media has been carried out re-
cently [25] and our discretization has been chosen accord-
ingly. In the absence of memory in the material nonlinearity,
the resulting system is of the Hamiltonian type since intrinsic
to RSS is a nonlinear absorption effect by nuclear vibations.
We have analyzed elsewhdi26] an energy-conserving FD
TD scheme for Maxwell’'s equations including the instanta-
neous Kerr nonlinearity.

Raman Response Function

IIl. EVOLUTION OF HIGHER-ORDER BRIGHT
SOLITONS -1.5

4 -2 0 2 4
Since the influence of RSS strongly depends on the peak Wave number Shift
intensity and spectral'wulij of the pulse, we expect the Ra- FIG. 2. Theoretical Raman gain spectrum, real part of the Ra-
m_an effeCt to affect s!gnlflcantly the evolqunl properties Ofman suceptibility(dashed curve and intensity spectrum of the ini-
initial higher-order solitons known to have an important nar-a| third-order soliton pulsethick solid curve. The controlling
rowing during the initial stage of evolutid27]. As an illus-  parameters of the Raman model arglo~1.2 and y,to~0.456
trative example we have chosen an initial hyperbolic secanto t,=1.28). The initial soliton duration is equal to 25.7 fs
third-order bright soliton pulse of duration equal to 25.7 fs(FwHM) (time constant,=14.6 fs anctty=4.38 um) and is cen-
(FWHM) (time constant,=14.6 fs anccty=4.38 um) cen-  tered at,=0.96 um (koCt,=28.56 and vacuum wavelength of 0.9
tered at\=0.96 um (vacuum wavelength of 0.g2m): am).
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10" ——— . . the NLS equation to exhibit solitonlike behavior from the

peak pulse intensity

scales

peak pulse FWHM

balance between the second-order and nonlinear length

(Cty)?
TEjZ): 0 ’
(1)”

2¢%kg

Erm— 29
wgw'aqg 29

Kerr—

and the balance equation read$=T@/Tyqy, i.€.,

2k

aEj3 ,
2
wow'ty

(30

yielding the valuaaE§=31O‘4 for the chosen carrier wave-
length.
ForN=3, the initial pulse represents a third-order soliton,

0.8 total optical energy i.e., a bound state of three solitons characterized by three

purely imaginary eigenvaludgontrolling the soliton ampli-

06k | tude of the eigenvalue problem associated with the inverse-

scattering transformatiofiST) in the context of the NLS
equation[27]. The real part of the eigenvalues, characteriz-

041 // ing the relative speed of the constitutive solitons, is zero in

the absence of perturbations and the envelope of the higher-

. /\A/\/\ia@fj\M;
4

0 ) L 1 ) 35F
0 0.5 1 2 3 4
time 3

FIG. 3. Temporal dynamical evolution of the initial third-order 251
soliton shown in Fig. 2 in the nonlinear dispersive Lorentz medium.
Thick traces referring to the instantaneous Kerr mgadeinlinear
strengthaE§:3>< 10 %) are compared to the Raman model char- 15}
acterized byg=0.3 and Raman gain parameters are as given in Fig.
2. Ir

05

]
E 2

The controlling parameters of the Lorentzian were assumec

to be B;=3 (static permittivity equal to  8,), 277(»1_1 %
=15.3fs, (@1tp=6), andy 1=14.6 us (yt,=10"9).
The long relaxation timgsmall damping of the reso-

-40 -30 -20 -10 0 10 20 30 40 50
distance

nance causes two deep jumps of the linear refractive indexa 4
w~w,\1+B; and w~wq, Which outside this absorption

band increases slowly with frequency towards its infinite fre-
guency value of unity. The zero dispersion point lies at in- 3
finity and the Lorentz medium exhibits anomalous dispersion
(0">0) over the spectral domain above the absorption
band. The theoretical Raman gain profile is shown in Fig. 2g 2
as a function of the dimensionless wave-number sHift (
—ko)cty, together with the real part of the Raman nuclear
susceptibility and the intensity spectrum of the initial electric 1
field whose FWHM ink space is equal to 1.t%)~4.9 pm.

The parameters defining the Raman Lorentz mode[ Brg 0.5

151

v 1=122 fs, and y,'=32 fs (r,to~1.2, and v,t, 0
~0.456) Q,t,=1.28). The largest gain occurs at a wave 50
number shifted downward by abouyQ,t,~1.23 corre-

-40 -30 -20 -10 0 10 20 30 40 50
distance

sponding to 447 cm' (13.2 TH2, which is of the order of FIG. 4. Contour plots of the electric-field profile. The top pic-
the initial soliton spectral width. The initial peak intensity ture is for the Kerr model¢=0) and the bottom picture is for the
Jo=NEg and pulse width, have been adjusted according to Raman model =0.3).
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FIG. 5. Spatial and spectral dynamics of the decay of the third-order soliton caused by TOD afd @S (

order soliton pulsates with periodr(2)T{¥~336, due to  sponse. Figure 3 shows the results of the numerical integra-
phase interference among the constitutive solitons. The efion of Maxwell's equations for the initiaN=3 soliton

fect of higher-order dispersiofthe joint effect of TOD and evolving over four soliton periods. We have chosen the value
SS, or SS solelyis to modify the soliton velocity by an #=0.3 to parametrize the relative strength of the Kerr and
amount depending on its parametdrsal and imaginary Raman interactions. Thick traces correspond to the case of an
parts of the eigenvalugsleading, therefore, to the splitting instantaneous Kerr nonlinear responge=Q). To character-

of higher-order solitons into their constitutive fundamentalize solitonlike propaga’[ion regime, a useful parameter is
component$16]. In the presence of a delayed medium non-given by the product of the peak pulse intensity and the
linearity, the soliton shifts to longer wavelengths throughsquare of its FWHM. For fundamental solitons, this measure
RSS within the bandwidth of the pulse and hence experiof the “pulse area” is constant. The top picture displaying
ences a constant decelerati@ee Fig. 1 The effect domi-  the peak pulse intensity and FWHM shows that in the ab-
nates over SS since the deviation in the velocity increasesence of RSS the pulsating pattern of the initial three-solitons
proportionally to the propagation distance. The differentials|owly decays, a signature of the splitting of the initial pulse
frequency(or velocity shift (i.e., decelerationproduced by jnto its component solitons and radiation, due to TOD and
RSS is, in the linear approximation, proQortionaI to the slopess. The asymptotic height of each soliton is roughly
of the Raman gain profile ne&r=Kkq, d5¢9,(0), and to the  2\,/N=5/3,1,1/3, where\, are the imaginary eigenvalues
inverse of the fourth power of the pulse widtg,}, orEj[6].  obtained from the IST. In contrast, RSS drastically changes
Since the frequency shift depends on the amplitude, the mo#ihe dynamical behavior of the propagating soliton. As a con-
intense soliton decelerates more than the low-power onesequence of RSS, the wavelength and consequently the
Therefore, if the initial pulse contains solitons with different group velocity dispersiofsee Fig. 1 continuously increase.
amplitudes(like a bound higher-order solitonit will split However, since the energy of the soliton pu(8€) cannot

into individual solitons with different amplitudes and veloci- increase, the soliton is forced to increase its width, which in
ties. The difference in the frequency shifts between solitonsurn decreases the differential frequency shift, since the latter
and their relative velocities is the key mechanism in the soliis inversely proportional to the fourth power of the pulse
ton splitting produced by the Raman delayed nonlinear rewidth. From Fig. 3 we see that the Raman scattering clearly
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FIG. 6. Spatial and spectral dynamics of the decay of the initial third-order soliton due to RSE3).

dominates the higher-order dispersive effd@®D and S$

The two terms on the right-hand side of E83) describe,

The initial stage of pulse compression is similar for bothrespectively, the linea¢single-photoh and nonlineartwo-
Kerr and Raman models, except that the point of maximunphoton absorption losses, clearly illustrated in Fig. 3.

narrowing(foci) is delayed in the case of delayed nonlinear-

In Fig. 4 we present contour plots of the electric field. The

ity, reflecting the fact that the spectral center of gravity hagop picture, for the Kerr model, indicates a slight separation
been downshifted to the Stokes side. The total norma“ze@f the most intense part of the pulse that iS delayed due to

PDEs(16) coupled to the ODE$27) is defined as

g(t) = 50+ g([)(l)+ ng + gNL y

where

Eo=|HI*+|E[?,

)

2+w§|<b(1)|2

Ep)=

aéd

Eo ="
%202

2 3 2
En =alE]| 5(1_9)|E| +609Q,

2
Bio]

[(Q,)2+0Q507],

(31)

(32

group velocity framex’ =(x—uvt)/cty (the leading edge of
the initial pulse lies ak’>0). The bottom picture, for the
Raman model, shows clearly the constant deceleration of the
Stokes downshifted pulse and splitting of the initial bound
three-soliton state.

Finally, we show snhapshots of the spatial and spectral
pulse intensity profile at different characteristic times
=0,1/4,3/4,1,2,3,4measured in soliton periogto illustrate
the main pulse shaping mechanisms in Figs. 5 and 6 for the
Kerr and Raman models, respectively. Only the field inten-
sity envelopes are shown, but the corresponding spectra were
obtained from the full comple field. After four soliton
periods the most intense part of the pulse has separated from
the two other constituents by a small amount approximately
equal to 1.8ty in Fig. 5. The intensities are in agreement
with results from the IST, (5/3)1,(1/3¢. The weaker lead-
ing soliton is not visible on the scale of the graph. In Fig. 6
the soliton self-frequency shift is evidenced by the appear-
ance of two Stokes bands. After a quarter soliton period the

represent, respectively, the free-energy density and the hapulse reaches its maximal compressigine foci point; see
monic and nonlinear contributions. The evolution equationFig. 3 and spectral asymmetry is already visitéempare to
for the energy density reads

7o 4y|dD)2 a0y, (Q,)?

at Brw?

QZ

(33

Fig. 5, with a dominant peak neark{ kg)cty~ngQ,tg
~1.23(447 cm 1). The Stokes wing is clearly enhanced due
to Raman pumping from higher frequencies. RSS therefore
destroys the periodic breathing pattern of higher-order bright
solitons. The soliton decays into fragments after only three-
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quarters of a soliton period, which rapidly separate from eaclo the higher-order dispersive effecthird-order dispersion
other (compare with previous figurgs and self-steepening The dynamics of the soliton pulse

The shortest and most intense fragment shapes after a femidth, intensity, and spatial and spectral profile evidenced
periods to form a fundamental solitqisee Fig. 3 whose the formation of the fundamental soliton from the rest of the
subsequent evolution is governed by dispersion, self-phasaultisoliton pulse. Oscillations in the pulse width and inten-
modulation, and Raman self-frequency shift. Numericalsity are understood as a result of the interference of the form-
simulations indicated that the fragments evolve without freding main Stokes soliton with the rest of the pulse. Only the
qguency chirp, in contrast to the cage=0, where a small short intense Stokes pulse will experience a considerable fre-
negative frequency chirp at the leading edge and a positivguency shift since the efficiency of Raman scattering de-
chirp at the trailing side were observed due to the joint actiorpends on the pulse intensity and width. Raman self-scattering
of GVD and self-phase modulation. can therefore be regarded as a nonlinear filter for short in-

tense optical pulses.
IV. CONCLUSIONS

In conclusion, using the FD TD method, recently applied
to the field of nonlinear opticgl9], we have illustrated the
fragmentation of higher-order bright solitons from Max- L.G. is grateful to the Ministerio de Educaciy Cultura
well’'s equation in a nonlinear Lorentz medium characterizedf Spain for a research grant. L.V. is thankful for partial
by chromatic anomalous dispersion and nonlinear dispersiorsupport from the Comisio Interministerial de Ciencia y
A comparison with an instantaneous nonlinearity indicatedlechnologa of Spain(Grant No. PB95-0426 L.G. wishes
that even in the absence of Raman self-scattering, highete thank the optics group of Imperial College, London, where
order solitons decay into their constitutive components dugart of this work was carried out.
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