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Evolution of higher-order bright solitons in a nonlinear medium with memory

L. Gilles,* H. Bachiri, and L. Va´zquez
Departamento de Matema´tica Aplicada, Escuela Superior de Informa´tica, Universidad Complutense, E-28040 Madrid, Spain

~Received 10 November 1997!

Numerical integration of Maxwell’s equations for propagation of a femtosecond pulse in a medium with
memory characterized by linear and nonlinear Lorentz responses is carried out using the finite-difference
time-domain method recently applied to the field of nonlinear optics. The main dynamical features, interfer-
ence mechanisms of initial higher-order bright solitons under the combination of dispersion, self-phase modu-
lation, and Raman self-scattering, are considered and compared to the case of an instantaneous nonlinear
response.@S1063-651X~98!02905-5#

PACS number~s!: 42.65.Ky
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I. INTRODUCTION

Wave propagation in dispersive nonlinear media has
tracted considerable attention in the past decade@1#, in part
motivated by its potential applications to optical fiber co
munication systems. Propagation of picosecond opt
pulses in monomode optical fibers is governed by the n
linear Schro¨dinger ~NLS! equation describing the effects o
group velocity dispersion~GVD! and the refractive index
nonlinearity. Its general form is given by
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which can be simplified to
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if time and space are measured in the group velocity fra
t5t2x/vg , j5x. The NLS equation is obtained directl
from the governing Maxwell equations by a standard red
tive perturbation procedure@2# within the slowly varying en-
velope approximation~SVEA!, meaning that the pulse enve
lope A(x,t) modulating the underlying carrier wav
exp@i(k0x2v0t)# is assumed to be slowly varying in both tim
and space, which is expressed by the four conditions
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] tA

v0A
;O~e!!1. ~3!

Clearly, the SVEA imposes different requirements on
physical system. The ‘‘local’’ assumption of the SVEA~for
a pulse traveling in the space direction! demands that the
pulse width tFWHM must be much longer than the carri
oscillation periodT052pv0

21, i.e., the ratio of the spectra
frequency width to the carrier frequency is a small parame

*Electronic address: fite1z2@sis.ucm.es
571063-651X/98/57~5!/6079~9!/$15.00
t-

-
al
-

e

-

e

r

e;O(Dv/v0);O(T0 /tFWHM)!1 ~quasimonochromatic
approximation!. The ‘‘nonlocal’’ part of the SVEA requires
that the envelope must not significantly change as the p
propagates over a distance equal to the carrier oscilla
wavelengthl0, which is reflected mathematically by the fa
that the envelope equation contains only the first deriva
with respect to the coordinate along the propagation dir
tion, in contrast with Maxwell’s wave equation, which is o
second order in the propagation coordinate. Hence it can
solved with substantially less computational effort than Ma
well’s wave equation. This benefit has been exploited in
investigation of a vast number of nonlinear optical pheno
ena @3#. Processes involving a backward propagating pu
violate the latter nonlocal contribution.

The progress of ultrashort laser optics@4# has now arrived
at a point where light pulses with durations comparable
the carrier oscillation cycle have become available@5#. For
subpicosecond optical pulse durations~width up to; 50 fs!,
the NLS equation should be modified. The spectral width
such pulses becomes comparable to the carrier frequency
three main higher-order effects become important:~i! third-
order dispersion~TOD!, ~ii ! self-steepening~SS!, and ~iii !
Raman self-scattering~RSS!. TOD is a higher-order linear
effect arising from the wavelength dependence of GV
while SS and RSS are nonlinear processes resulting res
tively from the intensity dependence of the group veloc
~i.e., nonlinear dispersion! and the delayed response of th
nonlinearity. Among the three higher-order physical effec
the intrapulse Raman stimulated scattering is the domin
perturbation and is among the most important nonlinear
teractions that occur in optical fibers.

RSS produces a continuous downshift~redshift! of the
soliton carrier frequency, a phenomenon know as soli
self-frequency shift@6#, and, consequently, in the anomalo
dispersion regime, a continuous deceleration of the pu
Since its experimental discovery@7#, numerical@8# and ex-
perimental@9# investigations of higher-order nonlinear e
fects resulting from the finite response time of the mate
nonlinearity have been carried out extensively because
their fundamental as well as technological importance. R
man induced optical shocks and kink solitons represen
shock fronts propagating undistorted inside optical fib
have been predicted@10#. Carrier wave shocking of femto
second optical pulses as a result of a SS effect producing
6079 © 1998 The American Physical Society
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6080 57L. GILLES, H. BACHIRI, AND L. VAZQUEZ
well-separated events, one on the optical carrier and the o
on the envelope of the carrier, has been evidenced@11#. The
conditions for complete compensation of the soliton se
frequency shift by a proper choice of the optical gain sp
trum and the dispersion parameters of the media have b
given @12#. Phase-sensitive amplifiers have been dem
strated in this context to act as a restoring force in frequen
constraining the pulse to remain near its carrier wavelen
@13#. Soliton interactions induced by higher-order nonline
effects have also received a great deal of attention with
advances in soliton laser technology@14#, mainly because of
their key role in the propagation of an ultrahigh bit rate c
herent soliton train through optical fibers@15#. Migration of
the intersoliton phase difference associated with RSS fo
the solitons carrying the information bits into a deleterio
attractive phase relationship, which is detrimental to the
error rate. Therefore, the effects of various influences on
propagation of solitons including periodic amplificatio
higher-order dispersion, and Raman scattering losses, ea
which will be increasingly important for shorter puls
widths, have to be well understood. The goal of the pres
contribution is to address and analyze among these in
ences the important ultrafast nonlinear process of Ram
scattering.

Different generalized versions of the nonlinear Sch¨-
dinger equation have been proposed to model the for
higher-order processes. Following the perturbative Koda
and Hasegawa~KH! approach@16#, a generalized nonlinea
Schrödinger ~GNLS! equation including three additiona
terms representing the dominant higher-order effects is s
gested. Including the higher-order terms, the KH GN
equation may be written as

i
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]t2
1suAu2A1h50, ~4!

whereh represents the higher-order effects
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]t D . ~5!

The three higher-order terms describe respectively TOD,
and RSS. The KH GNLS equation correctly describes
higher-order nonlinear effects for optical pulses as shor
;50 fs @full width at half maximum~FWHM!#. For much
shorter pulses, it fails to provide a correct physical desc
tion since the effects of Raman gain are included only to fi
order. A more exact one-dimensional~1D! integro-
differential envelope equation has been derived@17# by Blow
and Wood and should be used in that case for a cor
description of SRS. The Blow-Wood~BW! GNLS equation
expressed by
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yields the KH GNLS equation under the assumption of sh
delays. The BW formalism does not rely directly on th
SVEA; it only assumes that there are at least three opt
cycles within the envelope, i.e.,e<1/3, and neglects back
ward propagating waves. Recently, a general 3D wave eq
tion first order in the propagation coordinate was sugges
by Brabec and Krausz@18# and the concept of envelop
equations was shown to be applicable to the single-cy
regime of nonlinear optics. In the frame of the Brabe
Krausz GNLS equation, not only the envelope but also
carrierphasemust not vary significantly as the pulse cove
a distance equal to the carrier wavelength@the so-called
slowly evolving wave approximation~SEWA!#. On the other
hand, it does not impose a limitation on the pulse width.

In this paper, we solve directly the 1D Maxwell equatio
for the evolution of an initial sub-~50-fs!multisoliton pulse in
a nonlinear medium with memory in both the linear a
nonlinear polarizations. For illustrative purposes we ha
chosen an initial third-order bright soliton pulse of durati
equal to 25.7 fs~FWHM! containing eight carrier oscillation
cycles. The finite-difference~FD! time-domain~TD! method,
proposed recently as a computational tool for the field
nonlinear optics@19#, discretizes the differential form o
Maxwell’s partial differential equations~PDEs! appended by
a set of ordinary differential equations~ODEs! for the
memory integrals and provides an accurate description of
pulse evolution for the given constitutive relation betwe
the electric field and polarizations, without recourse to
SVEA or SEWA. We restrict our attention to nonmagne
Kerr media with no free charges. We examine dynami
multisoliton pulse breathing mechanisms before and after
‘‘foci’’ point, the decay and formation of fundamental sol
tons under the influence of the higher-order nonlinear effe
A systematic comparison with a dielectric medium char
terized by an instantaneous nonlinear response is perfor
throughout.

II. GOVERNING EQUATIONS

We consider the time-dependent evolution of a on
dimensional pulse of right circular polarization in they-z
plane, traveling along thex axis. Maxwell’s equations for the
electric- and magnetic-field quantitiesE,H are

¹3E52m0]H/]t,

¹3H5]D/]t. ~7!

The material linear and nonlinear responses are inclu
through the constitutive relationD5e0@E1F#,where F
5F(1)1F(3) is the total induced electric macroscopic pola
ization, consisting of linear and nonlinear parts. If the tim
scale over which the medium changes~defined by the me-
dium polarization! is of the order of the pulse duration, th
effects of a finite response time must be taken into acco
Mathematically, the memory effects are described throu
the convolution integrals

F~1!~ t !5E
2`

t

x~1!~ t2t1!E~ t1!dt1 , ~8!
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F~3!~ t !5E
2`

t

x~3!~ t2t1 ,t2t2 ,t

2t3!•E~ t1!E~ t2!E~ t3!dt1dt2dt3

5E
2`

t

Dx~3!~ t2t1!E~ t1!dt1,

Dx~3!~ t2t1!5E
2`

t

x~3!~ t2t1 ,t2t2 ,t

2t3!•E~ t2!E~ t3!dt2dt3 . ~9!

For simplicity, a centrosymmetric and isotropic material h
been assumed, so that the second-order susceptibility te
x (2) is identically zero,x (1)5xyy

(1)5xzz
(1) and x (3)5xyyyy

(3)

5xzzzz
(3) @20#. As a consequence of isotropy, the electric

duction fieldD and the electric fieldE are parallel. Third-
order nonlinear effects include the quadratic electro-optic~dc
Kerr! effect, third-harmonic generation, four-wave mixin
intensity-dependent refractive index, stimulated Raman
Brillouin scattering, and two-photon absorption. The phy
cal mechanisms contributing to the nonlinear third-ord
electric susceptibility far from electronic absorption~i.e., in
the visible or infrared spectral regions because the electr
absorption lies in the ultraviolet! are of two different types
and contribute additively tox (3) @21#. An ‘‘electronic’’ con-
tribution, nearly instantaneous (; 0.1 fs!, arises from the
electronic response to the applied electric field against
heavy nuclei considered fixed at an average position.
second ‘‘nuclear’’ contribution arises from the electric-fiel
induced changes in the internal nuclear vibrations on a m
longer time scale (; 100 fs! and are usually temperatur
dependent. To model in a classical electrodynamical pic
these interactions@22,23#, the cubic polarization must b
proportional to the electric field at timet times a convolution
of the field intensity at earlier times~related to the intensity-
dependent small displacement of the vibrating nuclei fr
equilibrium!. Equation~9! is then simplified to

F~3!~ t !5Dx~3!~ t !E~ t !,

Dx~3!~ t !5E
2`

t

x~3!~ t2t1!iE~ t1!i2dt1 ,

x~3!~ t !5a@~12u!d~ t !1ugv~ t !#, ~10!

where a is the nonlinear coupling constant andu param-
etrizes the relative strength of the instantaneous and del
interactions. Thus the third-order memory functionDx (3) is
expressed as the sum of electronic instantaneous and
lecular vibrational delayed parts

Dx~3!5DxKerr
~3! 1Dxv

~3! ,

DxKerr
~3! 5a~12u!iEi2,

Dxv
~3!5auQv . ~11!

Qv describes the natural oscillation within the dielectric m
terial with frequency many orders of magnitude less than
s
sor
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optical wave frequency, responding to the field intens
Later, we will see thatQv can be thought of as being th
normal mode amplitude of a driven damped harmonic os
lator. In general, the nonlinear susceptibilityx (3) will differ
from x (1) in physical properties such as resonances and
laxations. In terms of the Fourier transform

E~ t !5
1

2pE2`

`

Ê~v!exp~ ivt !dv,

Ê~v!5E
2`

`

E~ t !exp~2 ivt !dt, ~12!

the medium polarizations are written as

F̂~1!~v!5x̂~1!~v!Ê~v!,

F̂~3!~v!5E
2`

`

Dx̂~3!~vv!Ê~v2vv!dvv ,

Dx̂~3!~vv!5x̂~3!~vv!E
2`

`

Ê~V!Ê* ~V2vv!dV. ~13!

From Eq.~13! the three-wave interaction process can be
garded as the scattering of the spectral componentÊ(v
2vv) into the third-order polarization wave spectral comp
nent F̂(3)(v) and nuclear vibrationsDx̂ (3)(vv), which in
turn are excited by every pair of spectral components se
rated by vv . Because of causality@i.e., the susceptibility
functionsx (1)(t) andx (3)(t) are zero fort,0#, the Fourier
transformsx̂ (1)(v),x̂ (3)(v) exist and are differentiable fo
all real v only if the real variablev is extended into the
upper complex planev5v r1 iv i with v i.0 ~strictly posi-
tive!, yielding the Kramers-Kro¨nig relations between the rea
and imaginary parts of each Fourier transform and ensu
*2`

` ux (1)(t)udt,` and *2`
` ux (3)(t)udt,`. Note that since

the susceptibility functions are real, the real part of th
Fourier transform is symmetric and the imaginary part an
symmetric.

To establish the link between the susceptibility formalis
and the description of dynamic nonlinear optical processe
is useful to introduce the important concept of optical fie
induced refractive index. For simplicity, we restrict our a
tention to right circularly polarized fields, i.e.,E
5@0,Ey ,Ez#

T, andH5@0,Hy ,Hz#
T, represented by

E~x,t !5
1

2
q~x,t !exp@ i ~k0x2v0t !#1c.c.,

H~x,t !5
1

2
h~x,t !exp@ i ~k0x2v0t2p/2!#1c.c., ~14!

which satisfy the phase relationsqz52 iqy and hz52 ihy ,
in which case new complex scalar wave packets can be
fined as

F E~x,t !

H~x,t !

D~x,t !
G5F q~x,t !

h~x,t !

d~x,t !
G exp@ i ~k0x2v0t !#, ~15!
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where E5Ey1 iEz , H5 iH y2Hz , and D5Dy1 iD z and
for which the third-harmonic polarization is absent sin
iEi25uEu25uq(x,t)u2. The corresponding Maxwell equa
tions are written as

]

]t
H5

1

m0

]

]x
E,

]

]t
D5

]

]x
H,

D5e0@E1F~1!1F~3!#, ~16!

or in the form of a wave equation for the complexE field

]2

]t2
E2c2

]2

]x2
E1

]2

]t2
F50. ~17!

In frequency space, assuming thatF̂ (3);Dx̂ (3)(v)Ê(v)
;x̂ (3)(v)uEu2, the wave equation reads

]2

]x2
Ê1e~v!

v2

c2
Ê50, ~18!

where

e~v!511x̂~1!~v!1Dx̂~3!~v! ~19!

is the dielectric function whose third-order contributio
Dx̂ (3)(v) is proportional to the field intensity. Sinc
x̂ (1)(v) andx̂ (3)(v) are in general complex, so is the diele
tric functione(v). Its real and imaginary parts are related
the refractive indexn(v) and the absorption loss coefficie
G(v) through the relationship

e~v!5Fn~v!1 iG~v!
c

2vG2

. ~20!

Therefore,

n~v!5n0~v!1n2uEu2,

G~v!5G0~v!1G2~v!uEu2, ~21!

where the linear and nonlinear optical induced refractive
dices are given by

n0~v!5 Re@A11x̂~1!~v!#,

n2;
x̂~3!~0!

2n0~v0!
;

a@~12u!1uĝv~0!#

2n0~v0!
, ~22!

while the single- and two-photon absorption coefficients

G0~v!5
v0

n0~v0!c
Im@ x̂~1!~v!#,

G2~v!5
v0

n0~v0!c
Im@ x̂~3!~v!#5

auv0

n0~v0!c
Im@gv~v!#.

~23!
-

e

To a good approximation for the visible and infrared spec
regions, the frequency dependence of the nonlinear refrac
index is not important and dominated by the Kerr nonline
ity. The fractionu of the nonlinear index coming from th
delayed nonlinear response can be obtained from measu
values ofn2 @24#. The imaginary part of the third-order sus
ceptibily G2 describes the Raman gain profile, responsi
for the RSS process. The continuous spectrum of the g
profile stretches from zero up to;440 cm21 (;13 THz!,
which covers the broad spectrum of femtosecond opt
soliton pulses. The Raman gain can then amplify the lo
frequency~Stokes! components of ultrashort wave packe
by pumping energy from their high-frequency~anti-Stokes!
components. Consequently, the center frequency of the p
continuously decreases during propagation~soliton self-
frequency shift! @6#.

Recently, a different approach in the nonlinear opt
community, emerging from the FD TD solution of Max
well’s equations, has been shown to be particularly w
suited to model electromagnetic nonlinear phenomena in
compact optical devices such as optical fibers, coupl
switches, and amplifiers@19#. Within this framework, the
medium memory~i.e., the linear and nonlinear dispersiv
properties! is described by a set of ODEs appended to Ma
well’s PDEs ~16!. The ODEs represent the dynamic equ
tions of the convolution integralsF (1) andQv driven by the
electric field and its intensity, respectively. Here we mod
the kernel functions by Lorentz linear dipole oscillators
single resonance frequency,

x̂~1!~v!5
b1v1

2

v1
212igv2v2

,

ĝv~v!5
Vv

2

Vv
212igvv2v2

, ~24!

where v1, g, Vv , and gv characterize the resonance fr
quency and bandwidth of the linear dipole oscillators mo
eling the medium response. In the time domain, the ker
functions obey damped harmonic-oscillator equations of m
tion

ẍ~1!~ t !12gẋ~1!~ t !1v1
2x~1!50,

g̈v12gvġv1Vv
2gv50, ~25!

whose solutions take the forms

x~1!~ t !5
b1v1

2

n0
exp~2gt !sin~n0t !Q~ t !,

gv~ t !5
Vv

2

nv
exp~2gvt !sin~nvt !Q~ t !, ~26!

where n05Av1
22g2 and nv5AVv

22gv
2. This property of

the kernel functions allows one to treat the memory integr
F (1),Qv as new dependent variables governed by driv
damped Lorentz oscillator equations
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FIG. 1. Theoretical linear chromatic dispersion features: linear refractive index~solid curve! and absorption coefficient~dashed curve!,
group velocity, group velocity dispersion, and third-order dispersion for a Lorentz medium characterized by a single resonance f
v1t056, static relative permittivity equal to 11b154, and damping rate equal togt051029.
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F̈~1!12gḞ~1!1v1
2F5b1v1

2E,

Q̈v12gvQ̇v1Vv
2Qv5Vv

2uEu2. ~27!

Such a phenomenological description of the interaction
tween light and matter relies on the Born-Oppenheimer
proximation. The ODEs~27! are coupled simultaneously t
Maxwell’s PDEs~16! and numerically integrated in a mov
ing coordinate system in order to keep the pulse slowly m
ing on the computational grid, using a second-order-in-tim
second-order-in-space nonlinear FD TD method with rad
tion boundary conditions describing the outgoing field b
havior. A detailed stability and phase error analysis of
TD methods in dispersive media has been carried out
cently @25# and our discretization has been chosen acco
ingly. In the absence of memory in the material nonlinear
the resulting system is of the Hamiltonian type since intrin
to RSS is a nonlinear absorption effect by nuclear vibatio
We have analyzed elsewhere@26# an energy-conserving FD
TD scheme for Maxwell’s equations including the instan
neous Kerr nonlinearity.

III. EVOLUTION OF HIGHER-ORDER BRIGHT
SOLITONS

Since the influence of RSS strongly depends on the p
intensity and spectral width of the pulse, we expect the
man effect to affect significantly the evolution properties
initial higher-order solitons known to have an important n
rowing during the initial stage of evolution@27#. As an illus-
trative example we have chosen an initial hyperbolic sec
third-order bright soliton pulse of duration equal to 25.7
~FWHM! ~time constantt0514.6 fs andct054.38mm) cen-
tered atl050.96mm ~vacuum wavelength of 0.9mm):
-
-

-
,
-
-

e-
-

,
c
s.

-

ak
-

f
-

nt

E~x,t50!5NE0 sech~x/ct0!exp~2ip/l0!, ~28!

with N53. The dimensionless carrier wave number and f
quency are equal tok0ct0528.56 andv0t0530.46, respec-
tively. The peak intensity of the initialE field is equal to
N2E0

2 and its full width at half maximum (1.76ct057.71
mm) contains eight carrier oscillation wavelengths. Appro
mate initial values forH and D can be obtained from the
Fourier transform of Eqs.~16! and~27! @26#. Figure 1 shows
typical theoretical material chromatic dispersion features
the optical range, obtained from the expression forx̂ (1)(v).

FIG. 2. Theoretical Raman gain spectrum, real part of the
man suceptibility~dashed curve!, and intensity spectrum of the ini
tial third-order soliton pulse~thick solid curve!. The controlling
parameters of the Raman model arenvt0;1.2 andgvt0;0.456
(Vvt051.28). The initial soliton duration is equal to 25.7
~FWHM! ~time constantt0514.6 fs andct054.38mm) and is cen-
tered atl050.96mm (k0ct0528.56 and vacuum wavelength of 0.
mm).
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The controlling parameters of the Lorentzian were assum
to be b153 ~static permittivity equal to 11b1), 2pv1

21

515.3 fs, (v1t056), andg21514.6ms (gt051029).
The long relaxation time~small damping! of the reso-

nance causes two deep jumps of the linear refractive inde
v;v1A11b1 and v;v1, which outside this absorption
band increases slowly with frequency towards its infinite f
quency value of unity. The zero dispersion point lies at
finity and the Lorentz medium exhibits anomalous dispers
(v9.0) over the spectral domain above the absorpt
band. The theoretical Raman gain profile is shown in Fig
as a function of the dimensionless wave-number shiftk
2k0)ct0, together with the real part of the Raman nucle
susceptibility and the intensity spectrum of the initial elect
field whose FWHM ink space is equal to 1.12ct0;4.9 mm.
The parameters defining the Raman Lorentz model are@17#:
nv

21512.2 fs, and gv
21532 fs (nvt0;1.2, and gvt0

;0.456) (Vvt051.28). The largest gain occurs at a wa
number shifted downward by aboutn0Vvt0;1.23 corre-
sponding to 447 cm21 ~13.2 THz!, which is of the order of
the initial soliton spectral width. The initial peak intensi
q05NE0 and pulse widtht0 have been adjusted according

FIG. 3. Temporal dynamical evolution of the initial third-ord
soliton shown in Fig. 2 in the nonlinear dispersive Lorentz mediu
Thick traces referring to the instantaneous Kerr model~nonlinear
strengthaE0

25331024) are compared to the Raman model ch
acterized byu50.3 and Raman gain parameters are as given in
2.
d

at

-
-
n
n
2

r

the NLS equation to exhibit solitonlike behavior from th
balance between the second-order and nonlinear le
scales

Td
~2!5

~ct0!2

v9
,

TKerr5
2c2k0

v0
2v8aq0

2
~29!

and the balance equation readsN25Td
(2)/TKerr , i.e.,

aE0
25

2k0v9

v0
2v8t0

2
, ~30!

yielding the valueaE0
2531024 for the chosen carrier wave

length.
For N53, the initial pulse represents a third-order solito

i.e., a bound state of three solitons characterized by th
purely imaginary eigenvalues~controlling the soliton ampli-
tude! of the eigenvalue problem associated with the inver
scattering transformation~IST! in the context of the NLS
equation@27#. The real part of the eigenvalues, character
ing the relative speed of the constitutive solitons, is zero
the absence of perturbations and the envelope of the hig

.

-
g.

FIG. 4. Contour plots of the electric-field profile. The top pi
ture is for the Kerr model (u50) and the bottom picture is for the
Raman model (u50.3).
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FIG. 5. Spatial and spectral dynamics of the decay of the third-order soliton caused by TOD and SS (u50).
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arly
order soliton pulsates with period (p/2)Td
(2);336t0 due to

phase interference among the constitutive solitons. The
fect of higher-order dispersion~the joint effect of TOD and
SS, or SS solely! is to modify the soliton velocity by an
amount depending on its parameters~real and imaginary
parts of the eigenvalues!, leading, therefore, to the splittin
of higher-order solitons into their constitutive fundamen
components@16#. In the presence of a delayed medium no
linearity, the soliton shifts to longer wavelengths throu
RSS within the bandwidth of the pulse and hence exp
ences a constant deceleration~see Fig. 1!. The effect domi-
nates over SS since the deviation in the velocity increa
proportionally to the propagation distance. The differen
frequency~or velocity! shift ~i.e., deceleration! produced by
RSS is, in the linear approximation, proportional to the slo
of the Raman gain profile neark5k0, ]Dkĝv(0), and to the
inverse of the fourth power of the pulse width,t0

24, or E0
4 @6#.

Since the frequency shift depends on the amplitude, the m
intense soliton decelerates more than the low-power o
Therefore, if the initial pulse contains solitons with differe
amplitudes~like a bound higher-order soliton!, it will split
into individual solitons with different amplitudes and veloc
ties. The difference in the frequency shifts between solit
and their relative velocities is the key mechanism in the s
ton splitting produced by the Raman delayed nonlinear
f-

l
-

i-

es
l

e

st
e.

s
i-
-

sponse. Figure 3 shows the results of the numerical inte
tion of Maxwell’s equations for the initialN53 soliton
evolving over four soliton periods. We have chosen the va
u50.3 to parametrize the relative strength of the Kerr a
Raman interactions. Thick traces correspond to the case o
instantaneous Kerr nonlinear response (u50). To character-
ize solitonlike propagation regime, a useful parameter
given by the product of the peak pulse intensity and
square of its FWHM. For fundamental solitons, this meas
of the ‘‘pulse area’’ is constant. The top picture displayin
the peak pulse intensity and FWHM shows that in the
sence of RSS the pulsating pattern of the initial three-solit
slowly decays, a signature of the splitting of the initial pul
into its component solitons and radiation, due to TOD a
SS. The asymptotic height of each soliton is rough
2l I /N55/3,1,1/3, wherel I are the imaginary eigenvalue
obtained from the IST. In contrast, RSS drastically chan
the dynamical behavior of the propagating soliton. As a c
sequence of RSS, the wavelength and consequently
group velocity dispersion~see Fig. 1! continuously increase
However, since the energy of the soliton pulse~30! cannot
increase, the soliton is forced to increase its width, which
turn decreases the differential frequency shift, since the la
is inversely proportional to the fourth power of the pul
width. From Fig. 3 we see that the Raman scattering cle
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FIG. 6. Spatial and spectral dynamics of the decay of the initial third-order soliton due to RSS (u50.3).
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dominates the higher-order dispersive effects~TOD and SS!.
The initial stage of pulse compression is similar for bo
Kerr and Raman models, except that the point of maxim
narrowing~foci! is delayed in the case of delayed nonline
ity, reflecting the fact that the spectral center of gravity h
been downshifted to the Stokes side. The total normali
electromagnetic energy density calculated from Maxwe
PDEs~16! coupled to the ODEs~27! is defined as

E~ t !5E01EF~1!1EQv
1ENL , ~31!

where

E05uHu21uEu2,

EF~1!5
uḞ~1!u21v1

2uF~1!u2

b1v1
2

,

EQv
5

au

2Vv
2 @~Q̇v!21Vv

2Qv
2#,

ENL5auEu2F3

2
~12u!uEu21uQvG ~32!

represent, respectively, the free-energy density and the
monic and nonlinear contributions. The evolution equat
for the energy density reads

]

]t
E52

4guḞ~1!u2

b1v1
2

2
augv~Q̇v!2

Vv
2

. ~33!
-
s
d

s

ar-
n

The two terms on the right-hand side of Eq.~33! describe,
respectively, the linear~single-photon! and nonlinear~two-
photon! absorption losses, clearly illustrated in Fig. 3.

In Fig. 4 we present contour plots of the electric field. T
top picture, for the Kerr model, indicates a slight separat
of the most intense part of the pulse that is delayed due
higher-order dispersion. The distance is measured in
group velocity framex85(x2vt)/ct0 ~the leading edge of
the initial pulse lies atx8.0). The bottom picture, for the
Raman model, shows clearly the constant deceleration of
Stokes downshifted pulse and splitting of the initial bou
three-soliton state.

Finally, we show snapshots of the spatial and spec
pulse intensity profile at different characteristic timest
50,1/4,3/4,1,2,3,4~measured in soliton periods! to illustrate
the main pulse shaping mechanisms in Figs. 5 and 6 for
Kerr and Raman models, respectively. Only the field inte
sity envelopes are shown, but the corresponding spectra w
obtained from the full complexE field. After four soliton
periods the most intense part of the pulse has separated
the two other constituents by a small amount approxima
equal to 1.5ct0 in Fig. 5. The intensities are in agreeme
with results from the IST, (5/3)2,1,(1/3)2. The weaker lead-
ing soliton is not visible on the scale of the graph. In Fig
the soliton self-frequency shift is evidenced by the appe
ance of two Stokes bands. After a quarter soliton period
pulse reaches its maximal compression~the foci point; see
Fig. 3! and spectral asymmetry is already visible~compare to
Fig. 5!, with a dominant peak near (k2k0)ct0;n0Vvt0
;1.23~447 cm21). The Stokes wing is clearly enhanced d
to Raman pumping from higher frequencies. RSS theref
destroys the periodic breathing pattern of higher-order bri
solitons. The soliton decays into fragments after only thr
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quarters of a soliton period, which rapidly separate from e
other ~compare with previous figures!.

The shortest and most intense fragment shapes after a
periods to form a fundamental soliton~see Fig. 3! whose
subsequent evolution is governed by dispersion, self-ph
modulation, and Raman self-frequency shift. Numeri
simulations indicated that the fragments evolve without f
quency chirp, in contrast to the caseu50, where a small
negative frequency chirp at the leading edge and a pos
chirp at the trailing side were observed due to the joint act
of GVD and self-phase modulation.

IV. CONCLUSIONS

In conclusion, using the FD TD method, recently appli
to the field of nonlinear optics@19#, we have illustrated the
fragmentation of higher-order bright solitons from Ma
well’s equation in a nonlinear Lorentz medium characteriz
by chromatic anomalous dispersion and nonlinear dispers
A comparison with an instantaneous nonlinearity indica
that even in the absence of Raman self-scattering, hig
order solitons decay into their constitutive components
an

.
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to the higher-order dispersive effects~third-order dispersion
and self-steepening!. The dynamics of the soliton puls
width, intensity, and spatial and spectral profile evidenc
the formation of the fundamental soliton from the rest of t
multisoliton pulse. Oscillations in the pulse width and inte
sity are understood as a result of the interference of the fo
ing main Stokes soliton with the rest of the pulse. Only t
short intense Stokes pulse will experience a considerable
quency shift since the efficiency of Raman scattering
pends on the pulse intensity and width. Raman self-scatte
can therefore be regarded as a nonlinear filter for short
tense optical pulses.
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